

Lesson Plans: Fifth-Grade Fractions

KIPP DC Key Academy, Washington, D.C.

Topic: National Math Panel: Critical Foundations for Algebra

Practice: Mathematics Preparation for Algebra

The KIPP lesson plan approach is illustrated in these two examples from grade 5. The first lesson is about identifying fractions on a number line; the second lesson is about writing equivalent fractions.

In each case, the teacher's key questions to students and student worksheets are included.

5th Math Lesson Plan	MIXED NUMBERS ON NUMBER LINE			
	We will be able to name locations on a number line as fractions or mixed numbers by shading			
	and counting the spaces.			
Agenda	5 min—timer			
Do Now	Review as a class			
 HW Check 	Check PS 37, Assign PS 38			
	Pass out sheets—CAN YOU Split this up? So can you split this up? HOW?			
 Part of a wholeon a 				
line?	We've got itnow who can tell me what this is a picture of? Show picture of number line marked with arrow pointing to ¼ on the overhead. Well, how many total parts are there? And how many are shaded? (shade the spaces up until the arrow) 1! SO, this is a picture of what fraction? ¼			
	It turns out fractions can be shown on number lines as well. We're going to practice reading fractions on a number line now.			
	Pass notes out to students—they shade in ¼ and ¼.			
	Try 4 examples together on front.			
	Fill in notes:			
	Write the last whole number that the arrow has passed			
	Count the total number of spaces between whole numbers. This is the denominator Count how many spaces past the whole number the arrow is pointing. This is the numerator.			
	Students try three—partner check as they go.			
• Show Off! (8 min)	On back of Do Now, students solve 4 number line problems. Turn in for assessment			

FRACTIONS are PARTS of a whole!

Split this square into 4 equal parts:

Can you split the space in between 0 and 1 into 4 equal parts?

Split this square into 3 equal parts:

Can you split the space in between 0 and 1 into 3 equal parts?

Can you shade in 2 $\frac{1}{4}$ squares?

Can you point to where 2 1 would be on the number line?

Where is the arrow pointing?

Where is the arrow pointing?

AIM: _____

Steps:

- 1. Write the last whole number that the arrow passed.
- 2. Shade the <u>total</u> **spaces** between whole numbers on the BOTTOM. This is the <u>denominator</u>
- 3. Shade how many <u>spaces</u> past the <u>whole number</u> the arrow is pointing on top. This is the <u>numerator</u>.

Ex 1: Where is the arrow pointing?

Ex 2: Where is the arrow pointing?

Ex 3: Where is the arrow pointing?

Ex 4: Where is the arrow pointing?

Do Now!!

1)					
\$5.2	55.28 ÷ 6 =				

2) There are 240 students in the gym. $\frac{1}{3}$ of

them are fifth graders. How many students are fifth graders?

3) ESTIMATE how many degrees this angle measures:

Why do you think so?

4) Write the factors of 28:

5 th	Math Lesson Plan	WRITING EQUIVALENT FRACTIONS		
Aim		We will be able to find equivalent fractions by multiplying by a magic 1!		
Age	enda			
•	Do Now! (5 min + 4 min)			
•	HW Check (6 min)	Check MS L PS, Assign MS L PS		
•	How else can I make	Notes—Shade in one third, Then shade in an equal amount of sixths.		
	this picture?	Shade in an equal amount of ninths		
		Shade in an equal amount of twelfths		
		So, I know $1/3 = 2/6$, $1/3 = 3/9$, and $1/3 = 4/12$ They're the same amount. They are EQUAL!		
		There must be another way to do this tough, without drawing pictures.		
		Here's a brain teaser for you		
•	Brain Teaser	If I multiply a number by, my answer equals the number I started with.		
		What goes in the blank?		
		Do a few examples. 5 x 1, 11 x 1, 420,938 x 1		
		Okay, so if I multiply 1/3 x 1I still get 1/3. I didn't get 2/6		
		HOW CAN I GET 2/6?		
		I can't add to make an equal number, the only thing I can do is multiply by 1!		
		(If no one picks up that we could use a magic one, drop hints about it)		
		Right, I could multiply by a fraction that equals 1 couldn't I? Couldn't I multiply by a magic one?		
		Hwat happens if I multiply 1/3 x 2/2? Students do on their paper I get 2/6!		
		What happens if I multiply 1/3 x 3/3? I get 3/9!		
		1/3 x 4/4? I get 4/12! SO, I can multiply a fraction by a Magic One, and I will get a fraction that		
		is equal to it!		
		Test it!		
•	Equivalent Fraction	Let's write this down		
	Notes	Making Equivalent Fractions		
		When you multiply by one, the size of the number stays the same. ex: $5 \times 1 = 5$ or $1/3 \times 1 = 1/3$		
		If you multiply by a fraction that equals ONE, the size of the number stays the same, but it gets		
		a different name.		
		ex: 1/2 x 2/2= 2/4		
	010#	On back of Do Now		
•	Show Off!	OII DACK OI DO NOW		
		I		

$$\frac{1}{3}$$
 = $\frac{1}{6}$ $\frac{1}{3}$ = $\frac{1}{9}$ $\frac{1}{3}$ = $\frac{1}{12}$

Why does this work???

When I multiply any number by _____, my answer equals _____

When I multiply any fraction by a _____, my answer still equals the original fraction!

PROVE IT!!!

Write 3 different fractions equivalent to $\frac{2}{3}$:

Write a fraction equal to $\underline{2}$ that has a denominator of 12:

$$\frac{2}{3}$$
 x = $\frac{12}{12}$

Write a fraction equal to $\frac{1}{4}$ that has a denominator of 16:

$$\frac{1}{4}$$
 x = $\frac{1}{16}$

Try these:
A)
$$\frac{3}{4}$$
 x ___ = $\frac{9}{12}$

B)
$$\frac{2}{3}x = \frac{4}{6}$$

C)
$$\frac{2}{5}$$
 x ___ = $\frac{10}{10}$

D)
$$\frac{1}{2}x = \frac{1}{20}$$

Write a fraction equal to $\frac{1}{4}$ that has a denominator of 12:

Write a fraction equal to 2 that has a denominator of 10:

Write a fraction equal to $\frac{3}{8}$ that has a denominator of 24: